Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.
نویسندگان
چکیده
In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding.
منابع مشابه
Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone
The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the...
متن کاملGenipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold
Objective(s): To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO) nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers. Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nano...
متن کاملEngineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels.
The release of an anti-angiogenic agent, such as type XVIII/endostatin, from an implantable scaffold may be of benefit in the repair of articular cartilage. The objectives of this study are to develop an injectable mesenchymal stem cell (MSC)-incorporating collagen-based hydrogel capable of undergoing covalent cross-linking in vivo and overexpressing endostatin using nonviral transfection, and ...
متن کاملFabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2.
The aim of this study was to investigate the feasibility of fabricating porous crosslinked chitosan hydrogels in an aqueous phase using dense gas CO(2) as a foaming agent. Highly porous chitosan hydrogels were formed by using glutaraldehyde and genipin as crosslinkers. The method developed here eliminates the formation of a skin layer, and does not require the use of surfactants or other toxic ...
متن کاملHydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering
Novel polymeric hydrogel scaffolds for corneal epithelium cell culturing based on blends of chitosan with some other biopolymers such as hydroxypropylcellulose, collagen and elastin crosslinked with genipin, a natural substance, were prepared. Physicochemical and biomechanical properties of these materials were determined. The in vitro cell culture experiments with corneal epithelium cells have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2010